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Abs t rac t 

Covering and divide-and-conquer are two well-
established search techniques for top-down in­
duction of propositional theories However, 
for top-down induction of logic programs, only 
covering has been formalized and used exten-
sively In this work, the divide-and-conquer 
technique is formalized as well and compared 
to the covering technique in a logic program­
ming framework Covering works by repeat­
edly specializing an overly general hypothe­
sis, on each iteration focusing on finding a 
clause wi th a high coverage of positive exam­
ples Divide-and-conquer works by specializ­
ing an overly general hypothesis once, focus­
ing on discriminating positive from negative 
examples Experimental results are presented 
demonstrating that there are cases when more 
accurate hypotheses can be found by divide-
and-conquer than by covering Moreover, since 
covering considers the same alternatives repeat­
edly it tends to be less efficient than divide-
and-conquer, which never considers the same 
alternative twice On the other hand, cover­
ing searches a larger hypothesis space, which 
may result in that more compact hypotheses 
are found by this technique than by dmde-and-
conquer Furthermore, divide-and-conquer is, 
in contrast to covering, not applicable to learn­
ing recursive definitions, 

1 I n t r oduc t i on 
The search for an inductive hypothesis can be performed 
either bottom-up (I e from an overly specific hypothe­
sis to a more general) or top-down (I e from an overly 
general hypothesis to a more specific) In prepositional 
learning, two search techniques for top-down induction 
have been proposed covering and divide-and-conquer 
Covering, which has been used in e g the AQ family 
[Michalski,1980], constructs a hypothesis by repeatedly 
specializing an overly general hypothesis, on each iter­
ation selecting a disjunct that satisfies a subset of the 
positive examples and no negative examples unti l all 
positive examples are satisfied by the selected disjuncts 

Divide-and-conquer, which has been used m e g ID3 
[Quinlan,1986], constructs a hypothesis by dividing an 
overly general hypothesis into a set of hypotheses, which 
correspond to disjoint subsets of the examples It then 
continues recursively with those hypotheses for which thr 
corresponding subsets contain both positive and nega­
tive examples The resulting hypothesis consists of all 
specialized hypotheses for which the corresponding set'; 
contain positive examples only 

One of the mam long term goals of inductive logic pro 
gramming is to upgrade the techniques of the proposi 
tional learning paradigm to a logic programming frame 
work This in order to allow for the use of a more 
expressive formalism and to allow for the use of sub­
stantial background knowledge in the learning process 
However, of the two search techniques used in proposi 
tional learning, only covering has been formalized and 
used extensively for top-down induction of logic pro­
grams {e g in MIS [Shapiro,1983], FOIL [Quinlan,1990] 
A N A - E B L [Cohen 1991], FOCL [Pazzani et a/,199l], GREN-
DEL [Cohen,1992] and F O C L - F R O N T I E R [Pazzani and 
Brunk,1993]) This work contributes to the above 
long term goal by giving a formalization of dmde-and-
conquer in a logic programming framework This formal 
ization is in fact a reformulation of the algorithm SPEC­
TRE [Bostrom and Idestain-Almquist 1994], and can alsu 
be viewed as a generalization of the technique U6ed in 
ML-SMART [Bergadano and Giordana,1988] 

In the next section, the two search techniques are for­
malized and analysed in a logic programming framework 
In section three, an empirical evaluation of the two tech 
niques LS presented, m which the techniques are com 
pared with respect to efficiency and to the accuracy of 
the resulting hypotheses Finally, concluding remarks 
are given in section four In the following, we assume 
the reader to be familiar w i th the standard terminology 
in logic programming [Lloyd, 1987] 

2 Top-Down I nduc t i on of Logic 
Programs 

In this section, we first define the top-down induction 
problem in a logic programming framework We then 
present two common specialization operators and show 
how covering and divide-and-conquer can be formal 
ized using one of these Finally, we analyse the tech-
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niques wi th respect to the hypothesis spaces that are ex­
plored, the abil i ty to produce recursive hypotheses and 
the amount of redundancy in the produced hypotheses 

2 1 T h e T o p - D o w n I n d u c t i o n P r o b l e m 

The top-down induction problem can be formulated as 
follows 

Given a definite program O (overly general hypothe­
sis), a definite program B (background predicates) and 
two sets of ground atoms and (positive and neg­
ative examples) 
F ind 1 a definite program H, called a valid hypoth­
esis, such that and 

In this work we assume tliaL all positive and negative 
examples are ground instances of the same atom T, re­
ferred to as the target predicate, and that all clauses in O, 
and only those, define T Furthermore, we assume the 
target predicate to be non-recursive (1 e no instance of 
the target predicate is allowed in the body of a clause) 
It should be noted that this assumption does not pre­
vent other recursive predicates from being used in the 
definition of the target predicate The reason for this 
assumption is discussed in section 2 6 

2 2 S p e c i a l i z a t i o n O p e r a t o r s 

Literal addition is a specialization operator that has 
been used in several approaches for top-down indue 
tion of logic programs (e g [Shapiro,1983, Quintan, 1990, 
Pazzani et a/,1991]) By this operator, a clause is special­
ized by adding a literal to the body, where the literal usu­
ally is restricted to be an instance of a background pred­
icate Various restrictions are normally also put on the 
variables in the literals (e g at least one of the variables 
should appear elsewhere in the clause [Quinlan 1990]) 
Goal reduction is another specialization operator that 
has been used in several approaches (eg [Cohen,1991, 
Pazzani el a/,199l]) By this operator, a clause is spe­
cialized by resolving upon a literal in the bod> using one 
of the background clauses It should be noted that any 
specialization obtained by goal reduction can also be ob­
tained by literal addition (not necessarily in one step) 
On the other hand, it is also possible to define predicates 
that may introduce any literal (cf [Cohen,1992]), which 
makes any clause obtainable by literal addition also ob­
tainable by goal reduction Since goal reduction allows 
for more explicit control of what specializations are al­
lowed than literal addit ion, we have chosen the former 
operator when studying search techniques for top-down 
induction 

2 3 C o v e r i n g 

The covering principle can be applied in a logic pro­
gramming framework in the following way One of the 
clauses in the overly general hypothesis is selected and 

1MP denote* the least Herbrand model of P 

specialized unt i l the selected clause does not cover2 any 
negative examples This process is iterated unt i l all pos­
itive examples are covered by the selected clauses This 
technique is formalized in Figure 1, using goal reduction 
as a specialization operator 

B u i t ( S ) - red(S) 
s u i t ( S ) - b lack (S) 
rank(R) - num(R) 
rank(R) - face(R) 
r e d ( h e a r t s ) 
red(diamonds) 
b lack(spades) 
b lack (c lubB) 
num(l) num(lO) 
f a c e ( j ) f ace (q ) f a c e ( k ) 

figure 2 Background predicates 

Since the clause in the overly general hypothesis covers 
negative examples, it is specialized Choosing the first 
literal to resolve upon using the second clause defining 
s u i t ( S ) results m the following clause 

reward(S.R) - b l ack (S ) , r ank (R ) 
This clause still covers the second negative example; and 
is thus specialized Choosing the second literal to resolve 
upon using the first clause defining rank(R) results in 
the following clause 

BOSTRfJM 1196 

Figure ] The Covering algorithm 

E x a m p l e 
Assume that we are given the overlv general hypothesis 

rewaxdCS.R) - s u i t ( S ) , r a n k ( R ) 
and the background predicates in Figure 2, together with 
the following sets of positive and negative examples 

E+ = { rewardCopadeB 7) reward(clTibs 3 ) } 
E~ — { r eward (hea r t s ,5 ) rewardfc lube j ) } 



This clause does not cover any negative examples and 
is thus added to the resulting hypothesis Since the hy­
pothesis now covers all positive examples, the algorithm 
terminates □ 

The algorithm produces a valid hypothesis in a fi­
nite number of steps under the assumptions that there 
are a finite number of SLD-derivations of the positive 
and negative examples w r t the overly general hypoth­
esis and background predicates and that no positive 
and negative example have the same sequence of in­
put clauses in their SLD-refutations It should be noted 
that this property is not dependent on how the non-
deterministic choices in the algorithm are made How­
ever, these choices are crucial for the result Normally, 
a few number of clauses of high generality are pre­
ferred to a large number of specific clauses, and mak­
ing the wrong choices may result in a non-preferred, 
although valid, hypothesis Since it is computation­
ally expensive to find the optimal choices, these are 
often approximated In several approaches this has 
been done by selecting the refinement that maximizes 
the information gain [Quinlan,1990, Pazzani et at 1991, 
Cohen 1992] 

2 4 D i v i d e - a n d - C o n q u e r 
The divide-and-conquer principle can be applied in a 
logic programming framework in the following way Each 
clause in the overly general hypothesis covers a subset of 
the positive and negative examples If a clause covers 
positive examples only, then it should be included in the 
resulting hypothesis, and if it covers negative examples 
only then it should be excluded If a clause rovers both 
negative and positive examples, then it corresponds to 
a part of the hypothesis that needs to be further di­
vided into sub-hypo theses When taken together, these 
hypotheses should be equivalent to the divided hypoth­
esis This means that a clause that covers both positive 
and negative examples should be split into a number of 
clauses, that taken together are equivalent to the clause 
thai is split This can be achieved by applying the trans­
formation rule unfolding* [Tamaki and Sato,1984] This 
technique is formalized in Figure 3 

E x a m p l e 
Consider again the overly general hypothesis, back­
ground predicates and examples in the previous exam­
ple Calling the divide-and-conquer algorithm with the 
clause in the overly general hypothesis together with the 
background predicates and all covered examples results 
in the following 

Since the clause covers both positive and negative ex­
amples, unfolding is applied Unfolding upon E u i t ( S ) 
replaces, the clause with the following two clauses 

r«Haid(S,R) - r « d ( S ) , ranJc(R) 
reward(S.R) - b l a c k ( S ) , rank(R) 

The first clause coverB one negative example only, 
while the second clause covers, two positive examples and 

When unfolding upon a literal L m the body of a clause 
C in a definite program P, C is replaced with the resolvents 
of C and each clause in P whose head unifies wi th L 

Figure 3 The Divide-and-Conquer algorithm 

one negative example The algorithm is then called once 
with each of these clauses The empty hypothesis is re 
turned by the first rail since the first clause does not 
rover any positive examples The clause used in the sec 
ond call is unfolded since it covers both positive and 
negative examples Unfolding upon rank(R) replaces 
the clause wi th the following two clauses 

reward(S,R) - b l a c k ( S ) , num(R) 
reward (S.R) - b l a c k ( S ) , face(R) 

The first of these clauses covers two positive and no neg­
ative examples and is therefore included in the resulting 
hypothesis, while the second covers one negative example 
only, and is therefore no t i nc luded Hence, the resul t ing 
hypothesis is 

rewardCS.R) - b l a c k ( S ) , num(R) 

D 
Divide-and-conquer produces a valid hypothesis in a 

finite number of steps under the same assumptions as 
for covering, 1 e that there are a finite number of SLD-
denvations of the positive and negative examples and 
that no positive and negative example have the same se­
quence of input clauses in their SLD-refutations As for 
covering, it should be noted that the non-deterministic 
choices (in this case of which literals to unfold upon) are 
crucial for the result Again, the opt imal choices can be 
approximated by selecting the specialization that maxi 
mizes the information gain, as is done in [Boetrom and 
Idestam-Almquist,1994](cf 1D3 [Quinlan,1986]) 

2 5 T h e H y p o t h e s i s Spaces 
Let O be an overly general hypothesis and B be back­
ground predicates The hypothesis space for covering 
is . and 

, , , where The hypothesis space 
for dmde-and-conquer is 
where H' is obtained from by applying unfolding 
upon clauses that are not in B} 

Note that Hdac which follows from that each 
set of clauses obtained by unfolding can be obtained by 

denotes a. resolvent of C and D upon a l i teral un 
the body of C 
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goal reduction and that there are programs that can 
be produced by covering that can not be produced by 
divide-and conquer For example, consider the overly 
general hypothesis 

p ( I ) - q ( X ) , r ( X ) 
and the background predicates 

q(X) - B ( X ) 
r(X) - t ( X ) 

Then the following hypothesis is in Hcov , but not m Hdac 

p(X) - s ( I ) , r ( X ) 
p(X) - q ( X ) , t ( X ) 

2 6 R e c u r s i v e H y p o t h e s e s 
As was stated in section 2 1, the target predicate is as­
sumed to be non-recursive The reason for this is that 
divide-and-conquer is not applicable when specializing 
clauses that define recursive predicates, since decisions 
regarding one subset of examples may then affect other 
subsets of examples For example, consider the overly 
general hypothesis 

together with the positive and negative examples 

Then the first clause covers negative examples only and 
should therefore not be included in the resulting hy-
pothesis However, this can not, be achieved without 
obtaining an o\er l j specific hypothesis since then the 
positive examples would no longer bt covered Evtend-
mg the definition of cover to include all examples that 
use a clause, and not only use it as the first clause in 
their refutations does not solve the problem Then in 
the example above all examples would be covered by 
the first clause, and all except one by the second clause 
However, since the first clause can not be removed or 
specialized, it means this sub-part of the problem can 
not be treated separately according to the divide-and 
conquer principle One solution to this problem is to 
transform the overly general hypothesis into an equiva­
lent non-recursive hypothesis, as proposed in [Bostrom 
and ldestam-Almquist,1994] However, although this 
transformation allows divide-and-conqucr to be applied 
il prevents recursive hypotheses from being found It 
should be noted that although divide-and conquer is not 
applicable to recursive predicates it does not mean that 
recursive definitions can not be found by applying un­
folding and clause removal On the contrary, a technique 
for achieving this is presented in [Bostrom 1995] 

Covering, on the other hand, can be easily extended 
to deal wi th recursive predicates Instead of searching 
for a clause that together with background predicates 
covers some positive examples and no negative exam­
ples, a clause can be searched for that together with the 
clauses found so far and the background predicates can 
cover some not yet covered positive examples without 
covering any negative examples, and that allows for the 

remaining positive examples to be covered without cov­
ering any negative examples 

2 7 Redundancy 
When using covering the number of SLD-refutations of 
the positive examples is not necessarily the same for the 
resulting hypothesis as for the overly general hypothesis, 
I e the amount of redundancy may increase or decrease 
On the other hand., when using divide-and-conquer, the 
number of SLD-refutations of the positive examples is 
the same for both the overly general and the resulting 
hypothesis This follows from the fact that the number 
of SLD-refutations does not increase when unfolding is 
applied (proven in [Kanamon and Kawamura,1988]) In 
order to reduce the amount of redundancy when using 
divide-and-conquer, only a minor change to the algo-
r i thm is needed instead of placing a positive example 
in all subsets that correspond to clauses that cover the 
example, the example can be placed in one such subset 

3 Empi r i ca l Eva luat ion 
In this section we empirically evaluate the performance 
of covering and divide-and-ronquer We first present 
three domains that are used in the experiments and then 
present the experimental results 

3 1 Domains 
Two domains are taken from the UCI repository 
of machine learning databases and domain theories 
King+Rook versus King+Pawn on a7 and Tic Tac-Toe 
The third domam considers natural language parsing 
using a definite clause grammar and is taken from 
[Bratko 1990] 

The example sets in the UCI repository are repre-
sented by attribute vectors, and have to be transformed 
into atoms in order to be used together with the algo­
rithms The number of examples is 3196 in the first do-
main (of which 52 2% art positive) and 958 in the second 
domain (of which (65 1% are positive) 

Since the algorithms also require overly general hy­
potheses as input such are constructed for the two first 
domains in the following way (cf [Cohen,1991]) A new 
larger predicate is defined with as manv arguments as 
the number of attributes, and for each attr ibute a new 
background predicate is defined to determine the pos-
sible values of the attribute This technique is illus­
trated by the following overly general hypothesis and 
background predicate for determining win for x in the 
Tic-Tac-Toe domain 

win_ior_x(Si ,S2,S3,S4,S6,S6,S7 S8 S9) -
square(S1) , square(S2) , square(S3) , 
square(S4) , square(SB), square(S6) , 
square(S7) , squara(S8) , square(S9) 

square(z) 
square(o) 
square (b) 

An alternative formulation of the Tic-Tac-loe domain 
is used as well, where a new intermediate background 
predicate is introduced In the alternative formulation, 
the definition of the predicate square(S) is changed into 
the following 
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The hypothesis is that the new intermediate predicate 
wil l reduce the number of clauses in the resulting defi­
ni t ion, and hence increase the accuracy The reason for 
this is that it does not matter in the correct definition 
of the target predicate whether a square has the value o 
or b 

The set of positive examples in the third domain con­
sists of all sentences of up to seven words that can be 
generated by the grammar in [Bratko,1990, p 455], 1 e 
565 sentences The set of negative examples is generated 
by randomly selecting one word in each correct sentence 
and replacing it by a randomly selected word that leads 
to an incorrect sentence Thus the number of negative 
examples is also 565 Two versions of an overly general 
hypothesis are used for this domain The first version is 
shown below 

where the definition of the predicate s (X, Y) is the 
same as for s e n t e n c e d , Y ) , but with s substituted for 
sentence and with one extra clause s(X,X) By re­
ferring to the background predicate a(X,Y) instead of 
s e n t e n c e d , Y), the problem with recursive overly gen­
eral hypotheses is avoided, as discussed in section 2 6 

The second version introduces intermediate predicates 
in the definitions of aentenceCX.Y) and s (X ,Y) , that 
group words into classes in the following way 

The hypothesis is, like for the Tic-Tac-Toe domain, that 
the intermediate predicates wil l improve the accuracy of 
the resulting hypotheses 

3 2 E x p e r i m e n t a l R e s u l t s 

The performance of covering and dmde-and-conquer in 
the three domains is evaluated using the information 
gain heuristics that were mentioned in section 2 An 
experiment is performed wi th each domain, in which 
the entire example set is randomly split into two halves, 
where one half is used for training and the other for test­
ing The number of examples in the training set6 that are 
given as input to the algorithms are varied, representing 
1%, 5%, 10%, 25% and 50% of the entire example set, 
where the last subset corresponds to the entire set of 
training examples and a greater subset always includes 
a smaller The same training and test sets are used for 
both algorithms Each experiment is iterated 50 times 
and the mean accuracy on the test examples is presented 
below In addition, the amount of work performed by the 
two algorithms is presented measured as the number of 

times it is checked whether a clause covers an example 
or not5 

In Figure 4 and Figure 5, the results from the King-
Rook versus King-Pawn domain are presented It can 
be seen that dmde-and-conquer produces more accu­
rate hypotheses than covering for all sizes of the train­
ing set Furthermore, covering checks more examples 
than divide-and-conquer for all sizes of the training sets 
When the size of the training set is 50%, the number of 
checks made by covering is about 3 3 times as many as 
the number of checks made by divide-and-conquer The 
mean cpu time for divide-and-conquer at that point is 
566 9 s, and for covering 2075 3 s 

The reason for using this measure of efficiency and noL 
e g cpu seconds, IE that this measure is not implementation 
dependent Nevertheless, for some cases we also present the 
learning t ime measured in cpu seconds The algorithms were 
implemented in SICStus Prolog 2 1 and executed on a SUN 
SparcStation 5 
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Figure 4 Accuracy for the KR vs KP domain 
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Figure 5 No of checks for the KR vs KP domain 



In Figure 6 and Figure 7, the results from the DCG 
domain are presented The two upper curves in Fig-
ure 6 denote the accuracy of the hypotheses produced 
by divide-and-conquer and covering using intermediate 
predicates Interestingly, when no intermediate predi­
cates are used, covering and divide-and-conquer produce 
identical hypotheses, which is shown by the lowest curve 
This experiment also illustrates that the amount of back­
ground knowledge can be far more important than what 
search technique is used 

In Figure 7, it can be seen that covering checks more 
examples than divide-and-conquer for all sizes of the 
training sets and for both overly general hypotheses 
When the size of the training set is 50%, the number 
of checks made by covering without intermediate pred­
icates is about 30 3 times as many as the number of 
checks made by divide-and-conquer The mean cpu time 
for divide-and-conquer at that point is 5 4 s, and for cov­
ering 127 3 s 

In Figure 8 and Figure 9, the results from the Tic-Tac-
Toe domain are presented The curves labeled Covcr-
tng(i) and Divide-and-Conquer (i) in Figure 8 represent 
the accuracy of the hypotheses produced by divide-and-
conquer and covering with intermediate predicates The 
two other curves represent the accuracy of the programs 
produced by divide-and-conquer and covering without 
intermediate predicates It can be seen that covering 
performs better than divide-and-conquer both wi th and 
without intermediate predicates 

The amount of work performed by covering is more 
than what is performed by divide-and-conquer for all 
sizes of the training sets and for both overly general hy­
potheses, as shown in Figure 9 When the size of the 
training set is 50%, the number of checks made by cov­
ering without intermediate predicates is about 3 7 times 
as many as the number of checks made by dvide-and-
conquer The mean cpu time for divide-and-conquer at 
that point is 14 0 s and for covering 49 6 s 
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4 Concluding Remarks 
We have formalized the covering and divide-and-conquer 
techniques for top-down induction of logic programs 
The main difference between the techniques is that cov­
ering specializes an overly general hypothesis repeatedly, 
while dmde-and-conquer only specializes it once This 
has the consequence that a large amount of the work 
performed at each iteration in covering might be re­
peated, while this is not the case for divide-and-conquer 
This was demonstrated by the experiments, in which 
the amount of work performed by covering was up to 
30 times the amount of work performed by divide-aud 
conquer The experiments also demonstrated that the 
accuracy of the resulting hypothesis can be higher when 
focusing on discriminating positive from negative exam­
ples, which was done by divide-and-conquer, rather than 
focusing on a high coverage of positive examples, which 
was done by covering On the other hand, the hypoth­
esis space is larger for covering and thus more com­
pact hypotheses may be found by this technique than 
by divide-and-conquer Moreover, a major draw-back of 
divide-and-couquer, in contrast to covering, is that it is 
not applicable to learning recursive definitions 

The termination conditions for covering and divide-
and-conquer could be relaxed b> slightly altering the al­
gorithms Instead of requiring that no positive and neg­
ative examples have the same sequence of input clauses 
in their SLD-refutations, it is enough to require that for 
each positive example there is one SLD-refutalion with a 
unique sequence of input clauses This alterations would 
lead to that some valid hypotheses can be found that 
are not found by the algorithms in their current formu­
lations 

Instead of using goal reduction as a specialization op­
erator, literal addition could have been used in the for­
malizations and the experiments In the covering algo­
r i thm, a clause would then be specialized by adding a 
literal rather than resolving upon a literal in the body 
In the divide-and-conquer algorithm, a clause would then 
be replaced by all clauses obtainable by adding a l iteral, 
rather than all resolvents upon a literal However, as 
was pointed out earlier, by using goal reduction instead 
of literal addition, explicit control of the possible special­
izations is obtained, where the overly general hypothesis 
is used as a declarative bias that not only l imits what 
predicate symbols are used, but also how they are in­
voked 
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