
Covering vs Divide-and-Conquer for
Top-Down Induction of Logic Programs

Henr i k Bos t rom
Dept of Computer and Systems Sciences

Stockholm University
Electrum 230, 164 40 Kista, Sweden

henke@dsv su se

Abs t rac t

Covering and divide-and-conquer are two well-
established search techniques for top-down in­
duction of propositional theories However,
for top-down induction of logic programs, only
covering has been formalized and used exten-
sively In this work, the divide-and-conquer
technique is formalized as well and compared
to the covering technique in a logic program­
ming framework Covering works by repeat­
edly specializing an overly general hypothe­
sis, on each iteration focusing on finding a
clause wi th a high coverage of positive exam­
ples Divide-and-conquer works by specializ­
ing an overly general hypothesis once, focus­
ing on discriminating positive from negative
examples Experimental results are presented
demonstrating that there are cases when more
accurate hypotheses can be found by divide-
and-conquer than by covering Moreover, since
covering considers the same alternatives repeat­
edly it tends to be less efficient than divide-
and-conquer, which never considers the same
alternative twice On the other hand, cover­
ing searches a larger hypothesis space, which
may result in that more compact hypotheses
are found by this technique than by dmde-and-
conquer Furthermore, divide-and-conquer is,
in contrast to covering, not applicable to learn­
ing recursive definitions,

1 I n t r oduc t i on
The search for an inductive hypothesis can be performed
either bottom-up (I e from an overly specific hypothe­
sis to a more general) or top-down (I e from an overly
general hypothesis to a more specific) In prepositional
learning, two search techniques for top-down induction
have been proposed covering and divide-and-conquer
Covering, which has been used in e g the AQ family
[Michalski,1980], constructs a hypothesis by repeatedly
specializing an overly general hypothesis, on each iter­
ation selecting a disjunct that satisfies a subset of the
positive examples and no negative examples unti l all
positive examples are satisfied by the selected disjuncts

Divide-and-conquer, which has been used m e g ID3
[Quinlan,1986], constructs a hypothesis by dividing an
overly general hypothesis into a set of hypotheses, which
correspond to disjoint subsets of the examples It then
continues recursively with those hypotheses for which thr
corresponding subsets contain both positive and nega­
tive examples The resulting hypothesis consists of all
specialized hypotheses for which the corresponding set';
contain positive examples only

One of the mam long term goals of inductive logic pro
gramming is to upgrade the techniques of the proposi
tional learning paradigm to a logic programming frame
work This in order to allow for the use of a more
expressive formalism and to allow for the use of sub­
stantial background knowledge in the learning process
However, of the two search techniques used in proposi
tional learning, only covering has been formalized and
used extensively for top-down induction of logic pro­
grams {e g in MIS [Shapiro,1983], FOIL [Quinlan,1990]
A N A - E B L [Cohen 1991], FOCL [Pazzani et a/,199l], GREN-
DEL [Cohen,1992] and F O C L - F R O N T I E R [Pazzani and
Brunk,1993]) This work contributes to the above
long term goal by giving a formalization of dmde-and-
conquer in a logic programming framework This formal
ization is in fact a reformulation of the algorithm SPEC­
TRE [Bostrom and Idestain-Almquist 1994], and can alsu
be viewed as a generalization of the technique U6ed in
ML-SMART [Bergadano and Giordana,1988]

In the next section, the two search techniques are for­
malized and analysed in a logic programming framework
In section three, an empirical evaluation of the two tech
niques LS presented, m which the techniques are com
pared with respect to efficiency and to the accuracy of
the resulting hypotheses Finally, concluding remarks
are given in section four In the following, we assume
the reader to be familiar w i th the standard terminology
in logic programming [Lloyd, 1987]

2 Top-Down I nduc t i on of Logic
Programs

In this section, we first define the top-down induction
problem in a logic programming framework We then
present two common specialization operators and show
how covering and divide-and-conquer can be formal
ized using one of these Finally, we analyse the tech-

1194 LEARNING

niques wi th respect to the hypothesis spaces that are ex­
plored, the abil i ty to produce recursive hypotheses and
the amount of redundancy in the produced hypotheses

2 1 T h e T o p - D o w n I n d u c t i o n P r o b l e m

The top-down induction problem can be formulated as
follows

Given a definite program O (overly general hypothe­
sis), a definite program B (background predicates) and
two sets of ground atoms and (positive and neg­
ative examples)
F ind 1 a definite program H, called a valid hypoth­
esis, such that and

In this work we assume tliaL all positive and negative
examples are ground instances of the same atom T, re­
ferred to as the target predicate, and that all clauses in O,
and only those, define T Furthermore, we assume the
target predicate to be non-recursive (1 e no instance of
the target predicate is allowed in the body of a clause)
It should be noted that this assumption does not pre­
vent other recursive predicates from being used in the
definition of the target predicate The reason for this
assumption is discussed in section 2 6

2 2 S p e c i a l i z a t i o n O p e r a t o r s

Literal addition is a specialization operator that has
been used in several approaches for top-down indue
tion of logic programs (e g [Shapiro,1983, Quintan, 1990,
Pazzani et a/,1991]) By this operator, a clause is special­
ized by adding a literal to the body, where the literal usu­
ally is restricted to be an instance of a background pred­
icate Various restrictions are normally also put on the
variables in the literals (e g at least one of the variables
should appear elsewhere in the clause [Quinlan 1990])
Goal reduction is another specialization operator that
has been used in several approaches (eg [Cohen,1991,
Pazzani el a/,199l]) By this operator, a clause is spe­
cialized by resolving upon a literal in the bod> using one
of the background clauses It should be noted that any
specialization obtained by goal reduction can also be ob­
tained by literal addition (not necessarily in one step)
On the other hand, it is also possible to define predicates
that may introduce any literal (cf [Cohen,1992]), which
makes any clause obtainable by literal addition also ob­
tainable by goal reduction Since goal reduction allows
for more explicit control of what specializations are al­
lowed than literal addit ion, we have chosen the former
operator when studying search techniques for top-down
induction

2 3 C o v e r i n g

The covering principle can be applied in a logic pro­
gramming framework in the following way One of the
clauses in the overly general hypothesis is selected and

1MP denote* the least Herbrand model of P

specialized unt i l the selected clause does not cover2 any
negative examples This process is iterated unt i l all pos­
itive examples are covered by the selected clauses This
technique is formalized in Figure 1, using goal reduction
as a specialization operator

B u i t (S) - red(S)
s u i t (S) - b lack (S)
rank(R) - num(R)
rank(R) - face(R)
r e d (h e a r t s)
red(diamonds)
b lack(spades)
b lack (c lubB)
num(l) num(lO)
f a c e (j) f ace (q) f a c e (k)

figure 2 Background predicates

Since the clause in the overly general hypothesis covers
negative examples, it is specialized Choosing the first
literal to resolve upon using the second clause defining
s u i t (S) results m the following clause

reward(S.R) - b l ack (S) , r ank (R)
This clause still covers the second negative example; and
is thus specialized Choosing the second literal to resolve
upon using the first clause defining rank(R) results in
the following clause

BOSTRfJM 1196

Figure] The Covering algorithm

E x a m p l e
Assume that we are given the overlv general hypothesis

rewaxdCS.R) - s u i t (S) , r a n k (R)
and the background predicates in Figure 2, together with
the following sets of positive and negative examples

E+ = { rewardCopadeB 7) reward(clTibs 3) }
E~ — { r eward (hea r t s ,5) rewardfc lube j) }

This clause does not cover any negative examples and
is thus added to the resulting hypothesis Since the hy­
pothesis now covers all positive examples, the algorithm
terminates □

The algorithm produces a valid hypothesis in a fi­
nite number of steps under the assumptions that there
are a finite number of SLD-derivations of the positive
and negative examples w r t the overly general hypoth­
esis and background predicates and that no positive
and negative example have the same sequence of in­
put clauses in their SLD-refutations It should be noted
that this property is not dependent on how the non-
deterministic choices in the algorithm are made How­
ever, these choices are crucial for the result Normally,
a few number of clauses of high generality are pre­
ferred to a large number of specific clauses, and mak­
ing the wrong choices may result in a non-preferred,
although valid, hypothesis Since it is computation­
ally expensive to find the optimal choices, these are
often approximated In several approaches this has
been done by selecting the refinement that maximizes
the information gain [Quinlan,1990, Pazzani et at 1991,
Cohen 1992]

2 4 D i v i d e - a n d - C o n q u e r
The divide-and-conquer principle can be applied in a
logic programming framework in the following way Each
clause in the overly general hypothesis covers a subset of
the positive and negative examples If a clause covers
positive examples only, then it should be included in the
resulting hypothesis, and if it covers negative examples
only then it should be excluded If a clause rovers both
negative and positive examples, then it corresponds to
a part of the hypothesis that needs to be further di­
vided into sub-hypo theses When taken together, these
hypotheses should be equivalent to the divided hypoth­
esis This means that a clause that covers both positive
and negative examples should be split into a number of
clauses, that taken together are equivalent to the clause
thai is split This can be achieved by applying the trans­
formation rule unfolding* [Tamaki and Sato,1984] This
technique is formalized in Figure 3

E x a m p l e
Consider again the overly general hypothesis, back­
ground predicates and examples in the previous exam­
ple Calling the divide-and-conquer algorithm with the
clause in the overly general hypothesis together with the
background predicates and all covered examples results
in the following

Since the clause covers both positive and negative ex­
amples, unfolding is applied Unfolding upon E u i t (S)
replaces, the clause with the following two clauses

r«Haid(S,R) - r « d (S) , ranJc(R)
reward(S.R) - b l a c k (S) , rank(R)

The first clause coverB one negative example only,
while the second clause covers, two positive examples and

When unfolding upon a literal L m the body of a clause
C in a definite program P, C is replaced with the resolvents
of C and each clause in P whose head unifies wi th L

Figure 3 The Divide-and-Conquer algorithm

one negative example The algorithm is then called once
with each of these clauses The empty hypothesis is re
turned by the first rail since the first clause does not
rover any positive examples The clause used in the sec
ond call is unfolded since it covers both positive and
negative examples Unfolding upon rank(R) replaces
the clause wi th the following two clauses

reward(S,R) - b l a c k (S) , num(R)
reward (S.R) - b l a c k (S) , face(R)

The first of these clauses covers two positive and no neg­
ative examples and is therefore included in the resulting
hypothesis, while the second covers one negative example
only, and is therefore no t i nc luded Hence, the resul t ing
hypothesis is

rewardCS.R) - b l a c k (S) , num(R)

D
Divide-and-conquer produces a valid hypothesis in a

finite number of steps under the same assumptions as
for covering, 1 e that there are a finite number of SLD-
denvations of the positive and negative examples and
that no positive and negative example have the same se­
quence of input clauses in their SLD-refutations As for
covering, it should be noted that the non-deterministic
choices (in this case of which literals to unfold upon) are
crucial for the result Again, the opt imal choices can be
approximated by selecting the specialization that maxi
mizes the information gain, as is done in [Boetrom and
Idestam-Almquist,1994](cf 1D3 [Quinlan,1986])

2 5 T h e H y p o t h e s i s Spaces
Let O be an overly general hypothesis and B be back­
ground predicates The hypothesis space for covering
is . and

, , , where The hypothesis space
for dmde-and-conquer is
where H' is obtained from by applying unfolding
upon clauses that are not in B}

Note that Hdac which follows from that each
set of clauses obtained by unfolding can be obtained by

denotes a. resolvent of C and D upon a l i teral un
the body of C

1196 LEARNING

goal reduction and that there are programs that can
be produced by covering that can not be produced by
divide-and conquer For example, consider the overly
general hypothesis

p (I) - q (X) , r (X)
and the background predicates

q(X) - B (X)
r(X) - t (X)

Then the following hypothesis is in Hcov , but not m Hdac

p(X) - s (I) , r (X)
p(X) - q (X) , t (X)

2 6 R e c u r s i v e H y p o t h e s e s
As was stated in section 2 1, the target predicate is as­
sumed to be non-recursive The reason for this is that
divide-and-conquer is not applicable when specializing
clauses that define recursive predicates, since decisions
regarding one subset of examples may then affect other
subsets of examples For example, consider the overly
general hypothesis

together with the positive and negative examples

Then the first clause covers negative examples only and
should therefore not be included in the resulting hy-
pothesis However, this can not, be achieved without
obtaining an o\er l j specific hypothesis since then the
positive examples would no longer bt covered Evtend-
mg the definition of cover to include all examples that
use a clause, and not only use it as the first clause in
their refutations does not solve the problem Then in
the example above all examples would be covered by
the first clause, and all except one by the second clause
However, since the first clause can not be removed or
specialized, it means this sub-part of the problem can
not be treated separately according to the divide-and
conquer principle One solution to this problem is to
transform the overly general hypothesis into an equiva­
lent non-recursive hypothesis, as proposed in [Bostrom
and ldestam-Almquist,1994] However, although this
transformation allows divide-and-conqucr to be applied
il prevents recursive hypotheses from being found It
should be noted that although divide-and conquer is not
applicable to recursive predicates it does not mean that
recursive definitions can not be found by applying un­
folding and clause removal On the contrary, a technique
for achieving this is presented in [Bostrom 1995]

Covering, on the other hand, can be easily extended
to deal wi th recursive predicates Instead of searching
for a clause that together with background predicates
covers some positive examples and no negative exam­
ples, a clause can be searched for that together with the
clauses found so far and the background predicates can
cover some not yet covered positive examples without
covering any negative examples, and that allows for the

remaining positive examples to be covered without cov­
ering any negative examples

2 7 Redundancy
When using covering the number of SLD-refutations of
the positive examples is not necessarily the same for the
resulting hypothesis as for the overly general hypothesis,
I e the amount of redundancy may increase or decrease
On the other hand., when using divide-and-conquer, the
number of SLD-refutations of the positive examples is
the same for both the overly general and the resulting
hypothesis This follows from the fact that the number
of SLD-refutations does not increase when unfolding is
applied (proven in [Kanamon and Kawamura,1988]) In
order to reduce the amount of redundancy when using
divide-and-conquer, only a minor change to the algo-
r i thm is needed instead of placing a positive example
in all subsets that correspond to clauses that cover the
example, the example can be placed in one such subset

3 Empi r i ca l Eva luat ion
In this section we empirically evaluate the performance
of covering and divide-and-ronquer We first present
three domains that are used in the experiments and then
present the experimental results

3 1 Domains
Two domains are taken from the UCI repository
of machine learning databases and domain theories
King+Rook versus King+Pawn on a7 and Tic Tac-Toe
The third domam considers natural language parsing
using a definite clause grammar and is taken from
[Bratko 1990]

The example sets in the UCI repository are repre-
sented by attribute vectors, and have to be transformed
into atoms in order to be used together with the algo­
rithms The number of examples is 3196 in the first do-
main (of which 52 2% art positive) and 958 in the second
domain (of which (65 1% are positive)

Since the algorithms also require overly general hy­
potheses as input such are constructed for the two first
domains in the following way (cf [Cohen,1991]) A new
larger predicate is defined with as manv arguments as
the number of attributes, and for each attr ibute a new
background predicate is defined to determine the pos-
sible values of the attribute This technique is illus­
trated by the following overly general hypothesis and
background predicate for determining win for x in the
Tic-Tac-Toe domain

win_ior_x(Si ,S2,S3,S4,S6,S6,S7 S8 S9) -
square(S1) , square(S2) , square(S3) ,
square(S4) , square(SB), square(S6) ,
square(S7) , squara(S8) , square(S9)

square(z)
square(o)
square (b)

An alternative formulation of the Tic-Tac-loe domain
is used as well, where a new intermediate background
predicate is introduced In the alternative formulation,
the definition of the predicate square(S) is changed into
the following

BOSTROM 1197

The hypothesis is that the new intermediate predicate
wil l reduce the number of clauses in the resulting defi­
ni t ion, and hence increase the accuracy The reason for
this is that it does not matter in the correct definition
of the target predicate whether a square has the value o
or b

The set of positive examples in the third domain con­
sists of all sentences of up to seven words that can be
generated by the grammar in [Bratko,1990, p 455], 1 e
565 sentences The set of negative examples is generated
by randomly selecting one word in each correct sentence
and replacing it by a randomly selected word that leads
to an incorrect sentence Thus the number of negative
examples is also 565 Two versions of an overly general
hypothesis are used for this domain The first version is
shown below

where the definition of the predicate s (X, Y) is the
same as for s e n t e n c e d , Y) , but with s substituted for
sentence and with one extra clause s(X,X) By re­
ferring to the background predicate a(X,Y) instead of
s e n t e n c e d , Y), the problem with recursive overly gen­
eral hypotheses is avoided, as discussed in section 2 6

The second version introduces intermediate predicates
in the definitions of aentenceCX.Y) and s (X ,Y) , that
group words into classes in the following way

The hypothesis is, like for the Tic-Tac-Toe domain, that
the intermediate predicates wil l improve the accuracy of
the resulting hypotheses

3 2 E x p e r i m e n t a l R e s u l t s

The performance of covering and dmde-and-conquer in
the three domains is evaluated using the information
gain heuristics that were mentioned in section 2 An
experiment is performed wi th each domain, in which
the entire example set is randomly split into two halves,
where one half is used for training and the other for test­
ing The number of examples in the training set6 that are
given as input to the algorithms are varied, representing
1%, 5%, 10%, 25% and 50% of the entire example set,
where the last subset corresponds to the entire set of
training examples and a greater subset always includes
a smaller The same training and test sets are used for
both algorithms Each experiment is iterated 50 times
and the mean accuracy on the test examples is presented
below In addition, the amount of work performed by the
two algorithms is presented measured as the number of

times it is checked whether a clause covers an example
or not5

In Figure 4 and Figure 5, the results from the King-
Rook versus King-Pawn domain are presented It can
be seen that dmde-and-conquer produces more accu­
rate hypotheses than covering for all sizes of the train­
ing set Furthermore, covering checks more examples
than divide-and-conquer for all sizes of the training sets
When the size of the training set is 50%, the number of
checks made by covering is about 3 3 times as many as
the number of checks made by divide-and-conquer The
mean cpu time for divide-and-conquer at that point is
566 9 s, and for covering 2075 3 s

The reason for using this measure of efficiency and noL
e g cpu seconds, IE that this measure is not implementation
dependent Nevertheless, for some cases we also present the
learning t ime measured in cpu seconds The algorithms were
implemented in SICStus Prolog 2 1 and executed on a SUN
SparcStation 5

1198 LEARNING

Size of training sel (%)

Figure 4 Accuracy for the KR vs KP domain

Size of training sel (%)

Figure 5 No of checks for the KR vs KP domain

In Figure 6 and Figure 7, the results from the DCG
domain are presented The two upper curves in Fig-
ure 6 denote the accuracy of the hypotheses produced
by divide-and-conquer and covering using intermediate
predicates Interestingly, when no intermediate predi­
cates are used, covering and divide-and-conquer produce
identical hypotheses, which is shown by the lowest curve
This experiment also illustrates that the amount of back­
ground knowledge can be far more important than what
search technique is used

In Figure 7, it can be seen that covering checks more
examples than divide-and-conquer for all sizes of the
training sets and for both overly general hypotheses
When the size of the training set is 50%, the number
of checks made by covering without intermediate pred­
icates is about 30 3 times as many as the number of
checks made by divide-and-conquer The mean cpu time
for divide-and-conquer at that point is 5 4 s, and for cov­
ering 127 3 s

In Figure 8 and Figure 9, the results from the Tic-Tac-
Toe domain are presented The curves labeled Covcr-
tng(i) and Divide-and-Conquer (i) in Figure 8 represent
the accuracy of the hypotheses produced by divide-and-
conquer and covering with intermediate predicates The
two other curves represent the accuracy of the programs
produced by divide-and-conquer and covering without
intermediate predicates It can be seen that covering
performs better than divide-and-conquer both wi th and
without intermediate predicates

The amount of work performed by covering is more
than what is performed by divide-and-conquer for all
sizes of the training sets and for both overly general hy­
potheses, as shown in Figure 9 When the size of the
training set is 50%, the number of checks made by cov­
ering without intermediate predicates is about 3 7 times
as many as the number of checks made by dvide-and-
conquer The mean cpu time for divide-and-conquer at
that point is 14 0 s and for covering 49 6 s

BOSTROM 1199

4 Concluding Remarks
We have formalized the covering and divide-and-conquer
techniques for top-down induction of logic programs
The main difference between the techniques is that cov­
ering specializes an overly general hypothesis repeatedly,
while dmde-and-conquer only specializes it once This
has the consequence that a large amount of the work
performed at each iteration in covering might be re­
peated, while this is not the case for divide-and-conquer
This was demonstrated by the experiments, in which
the amount of work performed by covering was up to
30 times the amount of work performed by divide-aud
conquer The experiments also demonstrated that the
accuracy of the resulting hypothesis can be higher when
focusing on discriminating positive from negative exam­
ples, which was done by divide-and-conquer, rather than
focusing on a high coverage of positive examples, which
was done by covering On the other hand, the hypoth­
esis space is larger for covering and thus more com­
pact hypotheses may be found by this technique than
by divide-and-conquer Moreover, a major draw-back of
divide-and-couquer, in contrast to covering, is that it is
not applicable to learning recursive definitions

The termination conditions for covering and divide-
and-conquer could be relaxed b> slightly altering the al­
gorithms Instead of requiring that no positive and neg­
ative examples have the same sequence of input clauses
in their SLD-refutations, it is enough to require that for
each positive example there is one SLD-refutalion with a
unique sequence of input clauses This alterations would
lead to that some valid hypotheses can be found that
are not found by the algorithms in their current formu­
lations

Instead of using goal reduction as a specialization op­
erator, literal addition could have been used in the for­
malizations and the experiments In the covering algo­
r i thm, a clause would then be specialized by adding a
literal rather than resolving upon a literal in the body
In the divide-and-conquer algorithm, a clause would then
be replaced by all clauses obtainable by adding a l iteral,
rather than all resolvents upon a literal However, as
was pointed out earlier, by using goal reduction instead
of literal addition, explicit control of the possible special­
izations is obtained, where the overly general hypothesis
is used as a declarative bias that not only l imits what
predicate symbols are used, but also how they are in­
voked

A ckn ow l edgement s
This work has been supported by the European Com­
munity ESPRIT BRA 6020 ILP (Inductive Logic Pro­
gramming) This work benefitted a lot f rom discussions
with Peter Idestam-Almquist, who originally made the
observation that the algorithm SPECTRE resembles I D 3
and suggested the use of an impuri ty measure

R e f e r e n c e s

[Bergadano and Giordana, 1988] Bergadano F and
Giordana A , "A Knowledge Intensive Approach to
Concept Induct ion", Proceedings of the Fifth Inter

national Conference on Machine Learning, Morgan
Kaufmann, CA (1988) 305-317

[Bostrom, 1995] Bostrom H , "Specialization of Recur­
sive Predicates", Proceedings of the Eighth European
Conference on Machine Learning, Spriuger-Vorlag
(1995)

[Bostrom and Idestam-Almquist,1994] Bostrom H and
Idestam-Almquist P , "Specialization of Logic Pro-
grams by Pruning SLD-Trees", Proceedings of the 4th
International Workshop on Inductive Logic Program
ming, volume 237 of GMD Studien, Gesellschafi fur
Mathematik und Datenverarbeitung M B H (1994) 3 1 -
48

[Bratko,1990] Bratko I , Prolog Programming for Ar
t i f icial Intelligence, (2nd edit ion), Addison-Wesley
(1990)

[Cohen,199l] Cohen W W , "The Generality of Over-
generality", Machine Learning Proceedings of the
Eighth International Workshop, Morgan Kaufmann
(1991) 490-494

[Cohen,1992] Cohen W W , 'Compiling Prior Knowl­
edge Into an Explicit Bias , Machine Learning Pro
cttdings of the Ninth International Workshop, Morgan
Kaufmann (1992) 102-110

[Kanamon and Kawamura,1988] Kanamon T and
Kawamura T "Preservation of Stronger Equivalence
in Unfold/Fold Logic Program Transformation (TI)' ,
ICOT Technical Report TR-403, Japan (1988)

[Lloyd 1987] Lloyd J W Foundations of Logic Pro
gramming (2nd edit ion), Springer-Verlag (1987)

[Michalski,1980] Michalski R S , "Pattern Recognition
as Rule-Guided Inductive Inference", IEEE Transac­
tions on Pattern Analysis and Machine Intelligence
2 (1980) 349-361

[Pazzani and Brunk,199j] Pazzani M and Brunk C
"Finding Accurate Frontiers A Knowledge-Intensive
Approach to Relational Learning" Proceedings of the
Eleventh National Conference on Art i f ic ia l Intelli
gence, Morgan Kaufmann (1993) 328-134

[Pazzani et al,199l] Pazzani M , Brunk C and Silver-
stein G "A Knowledge-Intensive Approach to Learn
ing Relational Concepts", Machine Learning Pro
ceedings of the Eighth International Workshop, Mor­
gan Kaufmann (1991) 432-436

[Quinlan.1986] Quinlan J R , "Induction of Decision
Trees' , Machine Learning 1 (1986) 81-106

[Quinlan,1990] Qmnlan J R , "Learning Logical Defi­
nitions from Relations" Machine Learning 5 (1990)
239-266

[Shapiro,1983] Shapiro E Y , Algorithmic Program De
bugging, M I T Press (1983)

[Tamaki and Sato, 1984] Tamaki H and Sato T , "Un­
fold/Fold Transformations of Logic Programs", Pro
ceedings of the Second International Logic Program­
ming Conference, Uppsala University, Uppsala, Swe
den (1984) 127-138

1200 LEARNING

